Opinions et Idées

Modern Risk Management in times of Machine Learning

08 juin 2023

by Dr. Denisa Čumova, FRM, Head of Portfolio Management and Quantitative Research & Dr. Philipp J. Kremer, CAIA, Senior Portfolio Manager & Quant Researcher

ARTIFICIAL INTELLIGENCE METHODS IN ASSET MANAGEMENT 

The launch of ChatGPT by Open AI at the beginning of the year highlighted the revolutionary character of artificial intelligence methods. While artificial intelligence was already present in translation services, digital assistants in customer chats, as well as image and speech recognition in medical science, ChatGPT has further revealed the variety of applications of artificial intelligence in our everyday lives. 

In the asset management industry, adopting Machine learning techniques can contribute to optimizing the investment process and can ameliorate risk management. Machine learning (ML), as a subfield of Artificial intelligence (AI), refers to algorithms and models that can learn complex patterns from input data in order to make predictions. Hence, ML methods can provide new insight on how to capture and evaluate capital market drivers. 

ML algorithms can model complex capital market relationships more precisely and can respond more dynamically to changes in market environments than traditional quant models since the structure of ML models is derived from input data. However, as ML methods are demanding with regard to data and computing power, they have for a long time not lived up to their full potential, despite the fact that the first models date back to the 1980s.

For the asset management industry, the solution to these limitations was resorting to a linear world, utilizing economic models such as the Capital Asset Pricing Model or the Arbitrage Pricing Theory, where the return and risk of an asset depends linearly on a set of factors. While the interpretability of such models is simple, economic reality reveals that relationships among variables are inherently non-linear in nature and that many non-linear economic relationships are not properly captured by traditional econometric models. Figure 1., where monthly US equity returns are plotted against US breakeven inflation rates, illustrates such a relationship. Clearly, a non-linear model is superior in capturing the underlying relationship.

Les sites du groupe
Mes favoris

Les épingles sont sauvegardées à l’aide des cookies, leur suppression dans votre navigateur supprimera vos préférences.

Le groupe La Française permet un accès aux expertises de plusieurs sociétés de gestion présentes dans le monde. Afin d’obtenir les informations les plus adaptées, nous avons développé une interface présentant l’ensemble de l’offre selon votre profil et votre pays de résidence.
Indiquez votre profil
1
Pays
2
Langue
3
Profil
Votre pays de résidence
Votre langue
Votre typologie de profil
<p class="new-disclaimer__legal-notice">Avant de consulter le site, nous vous prions de lire attentivement les informations «&nbsp;<a href="fr/mentions-legales/" target="_blank">mentions légales</a>&nbsp;» et «&nbsp;<a href="fr/actualites-reglementaires/" target="_blank">actualités réglementaires</a>&nbsp;» pour votre protection et dans votre intérêt. Celles-ci expliquent certaines restrictions juridiques et réglementaires qui s’appliquent à tous les investisseurs particuliers ou professionnels relevant du droit Français. J’ai lu et j’accepte les modalités d’utilisation de ce site dès lors que je me connecte en tant que non professionnel ou professionnel. <br>Dans le cadre de l’application de la directive européenne relative aux Marchés d’Instruments Financiers («&nbsp;MIF&nbsp;»), merci de préciser à quelle catégorie d'investisseur vous appartenez&nbsp;:</p>